
Use Case
Tutorial
Version X.x ● April 18, 2016

Company Name Limited
Street
City, State ZIP Country
phone: +1 000 123 4567  

Company Name Limited
Street
City, State ZIP Country
phone: +1 000 123 4567

Company Name Limited
Street
City, State ZIP Country
phone: +1 000 123 4567

www.website.com

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

Table of Contents
Introduction 3 ..

1. Use cases and activity diagrams 4 ...

1.1. Use case modelling	 4 ..

1.2. Use cases and activity diagrams	 7 ..

1.3. Actors	 7 ...

1.4. Describing use cases	 8 ..

1.5. Scenarios	 10 ..

1.6. More about actors	 13 ..

1.7. Modelling the relationships between use cases	 15

1.8. Stereotypes	 15 ...

1.9. Sharing behaviour between use cases	 16 ..

1.10. Alternatives to the main success scenario	 17

1.11. To extend or include?	 20 ...

1.12. Issues with use cases	 21 ...

1.13. Self-assessment questions	 24 ..

1.14. Exercises	 25...

Copyright [Company] 2016	 	 Page #2

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

Introduction
Except for third party materials and otherwise stated, this document available under a Creative
Commons Attribution-NonCommercial-ShareAlike 2.0 Licence.

Full more tutorials, please see: http://openlearn.open.ac.uk/mod/resource/view.php?id=190548

!

Copyright [Company] 2016	 	 Page #3

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
http://openlearn.open.ac.uk/mod/resource/view.php?id=190548

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

1. Use cases and activity diagrams
1.1. Use case modelling
In this section, we take a closer look at use case modelling, and show you how it can be used to
model the requirements for a product that includes the development of a software application or,
simply, a system. Use case models act as a discussion tool between the requirements analyst and
stakeholders, and offer a common language for agreeing the functions of a proposed system. In
this discussion, we shall use the Unified Modelling Language (UML) notation (diagrams) for use
cases to reflect the fact that the development team are the stakeholders as well as the client and
the intended users.

The use cases for a system are a record of the intended behaviour of the system that is visible to
its users. This behaviour is what the system does when responding to the events that arise from
its interactions with a set of actors. The people who use the software system will be one group of
actors, but there may be other systems (some of which could be software based) and devices
(including computers) that must interact with the intended (software) system, which are also
actors.

An actor is anything outside a software system that interacts with it. For example, in a system
that allows people to buy goods over the Internet, the human users will be significant actors, but
so too will be the credit card system that enables users to pay for their purchases. Representing
other systems as actors lets you focus upon your area of concern. In UML, all actors (human or
otherwise) are represented by stick figures as illustrated in Figure 2.

!

Copyright [Company] 2016	 	 Page #4

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

Figure 2 A use case model for a system for checking in and out of a hotel

The contents of the use case ovals represent some tasks or coherent units of functionality, as the
UML defines it, which the system performs. The detailed description of each use case is held
elsewhere. An actor, shown by a stick figure, represents the role that a human or non-human
entity outside the system, often called a user, might play. The line connecting an actor figure and
a use case oval indicates an association between them, which represents communication between
the actor and the use case. It means that the actor may be involved in carrying out the task; it
does not mean that it must be involved, as we shall explain later.

The simple notations, like those in Figure 2, for the elements of a use case diagram are intended
to be intuitive, even for a lay person who is unfamiliar with the notation. It is possible to exploit
this simplicity to represent the main functions of a particular business. For example, if your
business was a lending library, then its main functions to be represented in a use case diagram
would be the borrowing of books, videos and CDs by its members. Copies of books, films and
music are the things handled or used by people; they are examples of business objects.

Use case diagrams deal with functional requirements (things that the system must do) alone, but
it is often recommended that, as you develop a use case diagram and come across nonfunctional
requirements (qualities that the product should have such as how responsive the system should
be), you should record them by annotating the use case diagram with a descriptive note. In the
UML, a note is shown as a rectangle with the top, right-hand corner folded down (see Figure 3).
Dashed lines are used to attach the note to the model element(s) to which it refers.

The system boundary, denoted in the UML by a rectangle surrounding the use cases is an
important conceptual line that separates the system we are interested in from the rest of the
world. By drawing the boundary around the system represented in a use case diagram, you are
setting the scope of your solution. Figure 3 shows a boundary for the hotel chain use cases. In
simple use case diagrams, it is common to omit the system boundary as in Figure 2.

Copyright [Company] 2016	 	 Page #5

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

!

Figure 3 A use case model for a system for checking in and out of a hotel

Figure 3 illustrates a common problem. From the diagram alone, it is not clear which of the two
actors, Guest or Receptionist, initiates the make reservation use case. It may even be that both are
needed to complete the use case successfully. The UML provides several ways to deal with this
problem. The simplest, which is shown in Figure 3, is to use a note to record this observation;
you would then refine (that is to say, amend, improve or extend) the model when you know more
about the use case.

The work context diagrams in MRP are related to use case diagrams through business events.
Inside the system boundary is the work, and the actors represent either people or autonomous
cooperative adjacent systems. The actors represent the context within which the work exists. The
lines joining an actor to a use case represent communication (the flow of data). In this section,
we are not only interested in the context of the work, we also want to look more closely at the
work itself.

Copyright [Company] 2016	 	 Page #6

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

1.2. Use cases and activity diagrams

1.3. Actors
Iteration is a natural part of the modelling process. It does not matter whether you start by
looking for the actors or the use cases. We have chosen to begin with the actors, since it is a way
of expressing the system boundary implicitly and identifying the different views that need to be
taken into account. In practice, you are likely to find that the actors are to be found in the roles
that people play as employees in the problem domain, such as the hotel's receptionist or manager.

Actors are not intended to represent a particular individual, rather they tell us about a particular
role that someone or something might adopt in order to interact with a system. For example,
someone who works as a receptionist in one hotel might want to stay in another hotel as part of
his or her holiday. Thus the same person will act in the role of receptionist at some times but will
adopt the role of a guest at other times. Hence the two roles are modelled as different actors.

You could begin the task of identifying the actors by looking for the groups of people who use
the current system in order to do their work. It might be easy to find those who perform the main
tasks, such as the receptionists who work on the front desk of a hotel. But it might be harder to
find those who use the system in support of their administrative or maintenance tasks. For
example, would the maintenance engineers and cleaners in the hotel have to be considered? The
answer will clearly depend on the scope of the problem being solved.

You can use an actor to represent an external software system. In the case of the hotel chain, it is
likely that you will need to pass information about a guest's stay to an accounting system. At
some later point, you may be asked to provide an interface to the restaurant side of the hotel in
order to associate the costs of any meals with the guests who ate them. When the guest leaves the
hotel, there may be a requirement to collect payment for the guest's stay from an external
banking or credit card system. In each case, you should consider whether or not there is some
value in an exchange between the use case and any identified external system. For the actors that
you have chosen to include, treat them as though they were an autonomous black box. You do
not need to know how they work. You only need to know about the shared phenomena that are
relevant to the exchange between your system and the external system.

It is important to distinguish between an actor and the way that actor communicates with the
system. For example, when analysing a system you should not be concerned with the mechanism
used by the receptionist to check guests in and out of the hotel system. It could involve the use of
a paper diary and a pen, a keyboard and a mouse to interact with a series of screens on a personal
computer (PC) or even include a network connection or voice recognition software. You should
concentrate on the meaning of the stimuli and the responses for any given use case, not the
communication mechanism that is used. That mechanism is part of the solution, which you
intend to provide.

In situations where two or more actors are associated with a use case, one of them must initiate
the actions. The other actor(s) will play a passive role. For example, when a guest checks into a
hotel in person, the receptionist typically performs the checking-in process and the guest has no

Copyright [Company] 2016	 	 Page #7

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

direct interaction with the system. In MRP this is described as a business event: the work learns
that such an event has happened by the arrival of an incoming flow of data and responds to this
business event.

When it comes to describing a use case, treat the system as a black box, as in the case of an
external system. It will accept stimuli from the actors and generate responses. That is,
information (data) flows between the actors and their associated use cases.

1.4. Describing use cases
To understand the work, you need a good idea of what each use case means. To get a feel for
what this might entail, look again at Figure 3 (reproduced below) which shows a simple use case
model for a hotel chain reservation system. Note that Figure 3 is not intended to be an exhaustive
model of the hotel domain; the scope of the problem to be solved is confined to reservations and
the processes of checking in and out.

!

Figure 3 A use case model for a system for checking in and out of a hotel

What do the use cases make reservation, check in guest and check out guest mean? No doubt,
using your own experience of reserving rooms at hotels, the names of the use cases are quite
indicative of what they represent. However, you should never rely on intuition or personal
experience but rather create a description of the use cases that you and the stakeholders can agree
upon. For example, suppose that the following is a description of the check in guest use case (for
a particularly simple system).

Copyright [Company] 2016	 	 Page #8

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

Upon arrival at a hotel, a guest provides the reference number for his or her reservation to the
hotel's receptionist, who uses it to find the details of that reservation so that each guest can
confirm them. The receptionist allocates an appropriate room to that guest and opens a bill for
the duration of the stay. The receptionist issues a key for the room.

Having read this description, you are probably thinking of all the deficiencies it contains. This is
just what should happen: you need to check with the receptionist to clarify that the description
contains all the necessary information. We shall not pursue this line of thought further now
because we want to draw your attention to the following observations about the requirements of
the check in guest use case.

There is a condition, known as a pre-condition, that must hold before a room can be allocated to
a guest. It is as follows.

There must be a reservation for the guest and there must be at least one room available (of the
desired type) and the hotel must be confident that the guest is able to pay for the room.

There is another condition, known as a post-condition, that must hold after a room has been
allocated to a guest. It is as follows.

The guest will have been allocated to a room for the period identified in the reservation; the
room will have been identified as being in use for a specific period and a bill will have been
opened for the duration of the stay.

In other words, we have captured the meaning of check in guest in terms of two statements: one
that must be true before the use case can be carried out – the precondition, and one that must be
true once the use case has been completed – the postcondition. At some later point, the developer
must decide how these conditions can be met as part of the design activity.

The advantage of describing a use case in terms of a pre-condition and a post-condition is that,
when you go on to elaborate the use case in more detail, that is, to describe its components, you
know that the components must also satisfy these same conditions. For example, it is no use if
one of the components ignores the fact that there must be a vacant room on the dates requested
and allows the reservation to go ahead, or if a component fails to indicate that the room, once
booked, cannot be booked again until it becomes free.

Notice that such a specification does not say how a reservation must be performed; simply what
conditions should be satisfied. The advantage of thinking in this way is that it avoids all issues to
do with software and leaves the developers (who may specialise in design and programming) to
choose an appropriate implementation, which is their field of expertise.

The two descriptions: the first, which is entirely prose, and the second, which is more formal
using pre- and post-conditions, are both equivalent descriptions (specifications) of the
requirements represented by the check in guest use case.

When something is described using natural language we often say that it is an informal
description. When we use a more structured approach to descriptions, such as the way in which
we described the pre- and post-conditions for the check in guest use case, we say that we are
being more formal. The ultimate level of formality, when we want to be as precise and

Copyright [Company] 2016	 	 Page #9

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

unambiguous as possible, is the use of mathematics. There are times when the use of
mathematics is essential; typically when dealing with software that controls situations which, if
incorrect, can lead to death (for example, aircraft and nuclear power stations). However, you
would not want to be too formal in most situations otherwise stakeholders are very unlikely to
understand your requirements.

1.5. Scenarios
The purpose of a use case is to meet the goal of its associated actor(s), such as a guest making a
reservation with a hotel. This implies that a use case should include everything that must be done
to meet that goal. For example, if it is necessary to check the availability of rooms in the hotel
for the desired length of stay before accepting a reservation, then we expect the use case to
contain that check. In general, a use case contains a narrative about the flow of events that
specifies a particular use of the software system.

A scenario is a description of a sequence of actions that illustrate a piece of interesting
behaviour. In the UML, a scenario is said to be an instance of a use case (implying that there
could be several such instances, each one describing a different situation). So, a scenario
describes the interaction and dialogue between the users of a system (its actors) and the system
itself. For a given use case, we expect to see one main scenario that describes the flow of events
leading to a successful conclusion. There may be other scenarios that describe alternative or
additions to the main scenario. Here, for example, are two possible scenarios for making a
reservation at a hotel.

1. Jill wants to reserve a room at the Ritz Hotel for 14 July. A room is available for that date and so
the receptionist makes a reservation for the guest, Jill.

2. Jack wants to reserve a room at the Savoy Hotel for the first week of August. There is no single
room that is free for seven days in August, but there is one room available for four days followed
by another of the same type for three days. The receptionist presents that option to Jack, who
rejects it.

Both scenarios are possible instances of the make reservation use case. Their interactions and
outcomes are different. In the first, there is a description of the use case leading to a successful
outcome. In the second, there is an exception to the main success scenario. Exceptions to the
normal behaviour for a use case are common, especially where actors decide to abort a use case
without completing it. However, the common theme among all the scenarios is the intent of an
actor to reach the goal defined by a use case. In the unsuccessful scenario above, Jack was trying
to make a reservation at the Savoy Hotel. Perhaps he didn't like the idea of changing rooms
during his stay. Hence, a use case should include any unusual or alternative courses of action.

You could start an investigation by simply identifying a use case and its main success scenario,
and later refine or adapt it. You will need to decide the way in which you record the information
for each use case not just for the main success scenario, but for all the relevant scenarios. At its
simplest, you can record a textual description (narrative) for each use case that details each
scenario together with its outcome.

Remember that your description of a use case expresses what the system should do without
constraining how it should do it. Since the description takes an external viewpoint, all the

Copyright [Company] 2016	 	 Page #10

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

behaviour is in the form of observable results. Later on, a developer will choose an architecture
for the solution and produce a workable design and implementation. While the structure and
format of a use case description may vary among the different development processes, we
suggest that you include the following items as minimum details.

• A unique identifier for the use case that allows traceability throughout development.
• The name of the actor that initiates the use case as well as the identity of any other actors that

may be associated with the main success scenario.
• A short description of the goal of the use case.
• A single sequence of steps that describe the main success scenario. You may also find it helpful

to number these steps for traceability, in cases where you need to identify any extensions or
variations that occur as a result of the other scenarios of a use case (we discuss this in more
detail later).

• A textual description of the pre- and post-conditions.

In some circumstances, you may have to add other information. For example, the identity of the
authors may be required where there is a large team of developers. In a risk-driven process, you
might be required to record an assessment of the risks, assumptions and outstanding issues to
support the decision-making process. For example, it helps to record the things that the authors
of a use case had assumed to be true during their analysis.

Opinions vary about the correct format of the description of a use case. One development process
might require a detailed structure with tightly controlled phrasing and numbering of each item in
the description. Another might place few or no limitations such that each use case reads like a
story – with a beginning, a middle and an end.

However, you should use the language of the domain to formulate the use cases and identify
requirements. Each requirement is part of the contract between the developer (as supplier) and
the customer. Both parties need to have a clear understanding of what is captured in each use
case and of what it means. Table 2 illustrates one way to structure and record a use case.

The main success scenario in Table 2 contains a stepwise description of what happens when
nothing goes wrong; usually the most common case. It is assumed that the steps are performed in
the order described with no concurrent (simultaneous) behaviour. In the next section, you will
see how each step can be used as a decision point to deal with exceptional circumstances. For
example, what should be done if there is no available room for the desired stay? Later, you will
see how the UML can be used to model the conditional and concurrent activities of a business
process. For example, what should be done at step 5 if the ‘guest’ had stayed in the hotel chain
before and had already provided these details?

Copyright [Company] 2016	 	 Page #11

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

Table 2 Textual description of a use case in the hotel domain

Identifier and
name UC_1 Make reservation.

Initiator Receptionist or Guest.

Goal Reserve a room at a hotel for a guest.

Pre-condition
None (that is, there are no conditions to be satisfied prior to carrying out this use
case).

Post-condition
A room of the desired type will have been reserved for the guest for the requested
period and the room will be occupied for that period.

Assumptions
A guest can make a reservation via the Internet. The guest is not already known to
the hotel's software system (see main success scenario, step 5).

Main success scenario

1 The guest requests a reservation.

2 The guest selects the desired hotel, dates and type of room.

3
The hotel receptionist provides the availability and price for the request (an offer is
made).

4 The guest agrees to proceed with the offer.

5 The guest provides identification and contact details for the hotel's records.

6 The guest provides payment details.

7 The hotel receptionist creates a reservation and gives it an identifier.

8 The hotel receptionist reveals the identifier to the guest.

9 The hotel receptionist creates a confirmation of the reservation and sends it to the guest.

Copyright [Company] 2016	 	 Page #12

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

1.6. More about actors
In the hotel example, you saw two actors in the use case diagram shown in Figure 3 (reproduced
below). Why is the actor Guest associated with the use case for making a reservation but not
associated with the use cases for checking in and out? The answer comes from an understanding
of what happens when someone, a guest, arrives at a hotel. Hotels are service oriented. That is to
say, they offer certain services to their guests with the intention of earning money for the
business. A hotel employs its staff on this basis. In particular, a hotel will employ a receptionist,
who will be the real user of the proposed software system, to deal with guests on their arrival and
departure; a guest will not use the system.

!

Figure 3 A use case model for a system for checking in and out of a hotel

However, if a goal of the new system is to allow potential guests to use their web browser to
make reservations in addition to contacting a hotel directly, the potential guest will be a user of
the proposed software system. Hence the use case diagram must show Guest as an actor for the
make reservation use case as in Figure 3. Since people will still be using other methods of
requesting a room, such as by telephoning or sending a letter to the hotel, we should allow for a
member of the hotel's staff to perform the service. Hence the use case diagram in Figure 3 and
the use case description in Table 2 include both the Receptionist and Guest actors.

If you need to include some significant information about the roles that actors play, you can do
so by expanding the use case diagram in the following way. Since either a guest or a receptionist
can make a reservation it may be better to think of a new kind of actor, a Reserver, say, who

Copyright [Company] 2016	 	 Page #13

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

could be either a Guest or a Receptionist. The use case shown in Figure 3 can then be modified to
the one shown in Figure 4.

!

Figure 4 A use case model showing specialisation between actors

The notation used in Figure 4 indicates that Guest and Receptionist are specialisations of
Reserver (or Reserver is a generalisation of Guest and Receptionist). That is, a Guest (or
Receptionist) can do the same thing as a Reserver (but they can do other things as well).

Copyright [Company] 2016	 	 Page #14

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

1.7. Modelling the relationships between use cases
There are two situations when you would consider adding details to a use case diagram:

• to identify a common task (and its associated scenarios) that is shared between two or more use
cases;

• to record any alternatives or additions to the main success scenario as separate use cases.

In both situations, the new tasks are shown as new use cases (ovals) and, as you will see below,
the UML provides a suitable notation (known as a stereotype) to represent the relationship
between the original use cases and the new ones.

The main disadvantage of this approach is the additional complexity they bring to a model in
contrast to the simple use cases considered previously. The best advice for you as a requirements
analyst is to remember why you are creating the model and who it is for.

1.8. Stereotypes
In the UML, a stereotype is a way of adding detail to any part (element) of a model. It is a way
of expressing variation or a usage distinction that tells you more about the original element. For
example, the line drawn between an actor and a use case indicates that there is an association
between them. We could add the stereotype «communication» to such a line to emphasise the
communication that takes place between the two. In practice, this stereotype is left out because it
is the only type of association between an actor and a use case.

In general, stereotyping is a recognised way of extending the UML. You can define your own
term and place it between the angle brackets (or guillemets: «»). However, there must be some
agreement in the team about the existence and documentation of such new terms.

The UML includes some stereotypes that you cannot redefine. Two of them are used to describe
dependencies between use cases and these are discussed in Subsections 6.8 and 6.9.

Copyright [Company] 2016	 	 Page #15

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

1.9. Sharing behaviour between use cases
For each use case there may be more than one scenario. In the process of requirements elicitation
and specification, you may find a certain amount of common behaviour in two or more of your
use cases. You may even find that an existing component can provide part or all of that common
or shared behaviour. Indeed, if you do find such an existing component, this is an example of
reusing requirements which is discussed more fully in MRP.

You can record the shared behaviour in a new use case and connect it to the use cases that it
came from with an open-headed, dashed arrow pointing from the original use case to the new
one. Think of the new use case as always being included in each of the originals. Hence the
dependency arrow is labelled with the «include» stereotype. Figure 5 shows some examples from
the hotel domain (rooms are not normally allocated until a guest checks in for a variety of
reasons: rooms need servicing, guests extend their stay, and so forth). The «include» stereotype
simply shows that a use case can contain one or more ‘sub’ use cases and that some such sub-use
cases can be reused in two or more use cases.

!

Figure 5 Shared behaviour in a hotel system

The check for available rooms sub-use case is a shared piece of behaviour, a common scenario,
which can be developed separately from other use cases. Note that this is unconditional
behaviour – the check for available rooms sub-use case must be performed whenever a
reservation is made or a guest checks in.

Copyright [Company] 2016	 	 Page #16

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

By taking out any common or shared behaviour, you can benefit from a simplification of the
original use cases and make them easier to understand. There is a further benefit in terms of the
internal consistency of the final requirements specification. Instead of having two or more
different scenarios for a room availability check, for example, there will be just one main success
scenario for the new room availability check use case as shown in Figure 5.

In addition, there is a chance to consider the reuse of existing components and also the potential
identification of new components.

1.10. Alternatives to the main success scenario
If a use case incorporates a scenario that is significantly different from the main success scenario,
you may decide to create a new subsidiary use case. There may even be a need to create more
than one subsidiary, depending on what happens in different circumstances. For example, when
making a reservation in a typical hotel the receptionist would first determine whether the guest
was already known to the hotel (among other advantages, this would speed up the reservation
process since re-entering of all the guest's details would be avoided). Of course, in the case of a
new guest and therefore not known to the hotel, all the guest's details would have to be entered.

Figure 6 shows a development of the hotel system use case diagram that identifies two new sub-
use cases: identify guest and create new guest. The identify guest sub-use case is part of the make
reservation use case and is connected to the original make reservation use case because it will
have to be carried out every time a reservation is made (unconditional behaviour). However, the
second new sub-use case, create new guest, which is connected to identify guest will not be
carried out every time a reservation is made. Therefore, create new guest is connected to identify
guest with an open-headed, dashed arrow labelled with the stereotype «extend». This is
conditional behaviour as it is only performed when the guest is not already known to the hotel.

The UML allows a number of ways to record the event that triggers the subsidiary use case. In
Figure 6, we have used the general purpose notation for a note to indicate that create new guest is
performed when a guest is not already known to the hotel.

The textual description of new use case should record a description of the corresponding
scenario. It should contain the following two key points:

• the condition that triggers the subsidiary use case, that is, the business event;
• the place(s) in the main success scenario where the condition is tested – these are called

extension point(s).

Copyright [Company] 2016	 	 Page #17

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

!

Figure 6 Alternative behaviour in a hotel system

Table 3 shows how the original description of the make reservation use case given in Table 2, has
been changed to take into account the extension to deal with instances where the hotel has no
unoccupied room available for the requested period, and the introduction of a new actor called
Reserver. Each step in the main success scenario acts as a potential extension point, from which
the relationship to a new use case can be defined. In Table 3, step 3 is the extension point that
leads to the additional steps described in steps 3.1 and 3.2. As the second extension point at step
5 shows, some work can be avoided if the potential guest for the reservation has stayed
somewhere in the hotel chain before. Where such choices arise, your main success scenario
should reflect the more dominant or typical flow. Table 3 reflects an emphasis upon new guests
for the hotel chain.

Copyright [Company] 2016	 	 Page #18

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

Table 3 Extending the description of a use case in the hotel domain

Identifier and
name UC_1 Make reservation.

Initiator Reserver (may be a Guest or a Receptionist).

Goal Reserve a room at a hotel for a guest.

Pre-condition None.

Post-condition
The guest will have been allocated to a room for the requested period and the room
will be occupied for that period.

Assumptions
The expected initiator is a guest using an Internet browser to perform the use case.
The guest is not already known to the hotel's software system (see main success
scenario, step 5).

Main success scenario

1 The reserver requests a reservation on behalf of a potential guest.

2 The reserver selects the desired hotel, dates and type of room.

3 The receptionist provides the availability and price for the request. (An offer is made.)

4 The reserver agrees to proceed with the offer.

5 The reserver provides identification and contact details for the hotel's records.

6 The reserver provides payment details.

7 The receptionist creates a reservation and gives it an identifier.

8 The receptionist reveals the identifier to the reserver.

9
The receptionist creates a confirmation of the reservation and sends it to the guest identified by the
reserver.

Extensions

3 A room matching the request is not available.

3.
1

The receptionist offers alternative dates and types of
room.

3.
2

The guest selects from the alternatives.

5 The guest is already on record.

5.
1

Resume at step 6.

Copyright [Company] 2016	 	 Page #19

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

1.11. To extend or include?
Whatever kind of system you intend to develop, you will need to consider its security. Usually,
we allow only trustworthy people to use a new system. Therefore, in a software solution we can
envisage a log-on use case, which describes how a user gains access through some authentication
procedure. How should such a requirement be included in the example of the hotel chain?

By analogy with natural languages, the UML allows a number of ‘grammatically correct’ options
each of which will make more or less sense depending on the context. For example, we could
show the log-on use case as a component of every use case that is associated with an actor, as
shown in Figure 7.

!

Figure 7 Including the log-on use case in the hotel domain

You can also redraw Figure 7, and produce Figure 8, showing the three original use cases as
variations of the log-on use case. It would be ‘grammatically correct’ although it would be
difficult for the reader to see the intended purpose of the system.

Copyright [Company] 2016	 	 Page #20

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

!

Figure 8 Making log-on the main use case

1.12. Issues with use cases
There can be a tendency to make diagrams too complex. You can reduce the complexity of your
use case diagram by:

• redrawing it at a higher level of abstraction;
• splitting it up into smaller modules, which the UML calls packages.

In the case of the hotel chain, we might partition our model into the following three packages:
• reservations;
• checking guests in and out of their rooms;
• system access.

Each package may then be assigned to a separate developer for implementation. However, the
project team must then deal with the dependencies between the three packages as they work
towards a solution that incorporates all three packages.

The above example about access to the hotel system illustrates a more general modelling
problem. It is often difficult to separate a problem from its solution. For example, it may seem
obvious that, to gain access to the system, an authorised person would enter their name and
password. However, this might not be the most appropriate method of authentication and it
would be better to simply state that access to the system should be by authorised personnel only
using an appropriate authorisation process. In practical terms, you should ask yourself the
question, ‘Am I analysing the problem or designing a solution?’

Copyright [Company] 2016	 	 Page #21

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

In software development, this question can be hard to answer. You may find it easier to think of
analysis as a way of investigating a problem and opening up choices, whereas design is a way of
taking decisions and narrowing down the number of choices to arrive at a solution.

It is easy to forget that a use case diagram is part of the structural view of a system. It defines
what tasks are to be supported, not the order in which they might occur. Although you record a
workflow in the steps of each scenario of a use case, there will have been some initial analysis of
the best or preferred way to achieve the goal of that use case. We shall look at how you can
explore different scenarios in the next section, where we consider how the UML allows you to
represent a workflow as it unfolds over time.

Use case modelling has led to most disagreement among experts and practitioners when they
discuss the definition and the use of the UML. Space does not permit a great deal of elaboration
of the arguments, but it is worth considering the kinds of problem that developers can have with
use case modelling.

Having decided to model a system in one or more use case models, the most important thing to
consider is their intended audience. You need use cases that can be read and understood by the
domain experts as well as the team of developers. The domain experts usually come from the
customer's area. If you cannot demonstrate the benefits of your proposed system to them, there is
little chance of it being acceptable to the customer. All technical projects of any kind are
vulnerable to this risk. Your only defence comes from your skills, experience and professional
ability.

In the same way, your use case models must be useful to the rest of your team. For example,
those who will be testing the new (software) system must be able to generate their tests from
your use cases and the subsequent design artefacts.

In terms of the content of each use case diagram, you should avoid the use of the «include» and
«extend» stereotypes for an audience that is less familiar with the UML than your team
members. The simple notation for actors and their associations with use cases has been a factor
in their favour.

A common problem with use case modelling is deciding the size and scope of each use case.
There is no consensus on this issue because of the wide variety of contexts and viewpoints.
However, we recommend that a use case should be smaller than a business process. In the hotel
chain, for example, the handling of reservations would be treated as a separate business process
to checking in and out. That is to say, make reservation is only one of the tasks in the process of
handling reservations.

An associated issue is deciding whether or not you have identified appropriate use cases. You
should always review your model and ask yourself, ‘Do the actors that have been associated
with a use case actually gain value from the use case?’ If the answer is ‘no’, omit the use case! A
useful technique for identifying appropriate use cases is to determine the life history of the
objects in the system. For example, in the eTMA system, the central object is an assignment. In
broad outline, its life history goes something like this. The student creates the assignment and
then submits it to the university. Then a tutor downloads the assignment, marks and comments on

Copyright [Company] 2016	 	 Page #22

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

it and sends it back to the university. Finally, the student retrieves (downloads) the marked
assignment and reads the tutor's comments. This leads to use cases that we might name as:
submit TMA, download TMA, mark TMA, return TMA, and retrieve TMA.

The main problem with use cases, in general, is the risk of straying into a top-down, functional
decomposition and away from the object-oriented viewpoint that is embedded within the UML.
It is easy to decompose each use case into smaller use cases in your search for reuse through the
«include» stereotype. Indeed, if you are making your project plans according to the use cases that
you identify, the urge to find a use case of a size that you can easily estimate is understandable. A
good project manager will make some assessment of this risk and review it upon each iteration of
the life cycle.

It is worth reiterating that, in the process described in MRP, the purpose of use cases is to help
with the understanding of the work that the product is to become a part of. There is always the
danger that the use case diagram becomes a model of the product (a solution) rather than a model
of the work (the problem), with the result that the product simply automates the current work and
no attempt is made to identify the best product to help with the work.

No single technique can guarantee that you will collect and identify all the users' requirements.
So, if you spend too much time modelling use cases, you can become distracted by the process of
modelling and lose track of the main aim, which is to capture the functional requirements for a
new system. Consequently, you should use more than one technique to produce a requirements
specification.

You can find out more about use cases in Cockburn (2001) and about UML in Fowler (2003):

Cockburn, A. (2001) Writing Effective Use Cases, Harlow, UK, Addison-Wesley.

Fowler, M. (2003) UML Distilled: A brief guide to the standard object modelling language (3rd
edn), Reading, MA, Addison-Wesley.

Copyright [Company] 2016	 	 Page #23

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

1.13. Self-assessment questions

1.13.1. Actors
(a) Explain why the actors in a use case diagram do not represent actual individuals.

(b) Suggest a guideline that will help you decide whether or not to include an interaction with an
external system on your use case model.

1.13.2. Describing use cases
(a) From your own experience, write down a description of the use case check out guest shown in
Figure 3.

(b) Suggest a pre-condition and a post-condition for the use case check out guest.

(c) If you were determining the requirements for a real hotel chain, what would you do next with
your answers to parts (a) and (b)?

1.13.3. Scenarios
What is the relationship between a use case and a scenario?

1.13.4. To extend or include?
(a) What are the two stereotypes that are used to define relationships between use cases in the
UML?

(b) What is the function of the «include» stereotype?

(c) What is the function of the «extend» stereotype?

(d) Is it necessary to place the «include» and «extend» stereotypes on all diagrams?

(e) How would you modify a use case model to show that you intend to employ a component that
already exists? Would you show this change to a user?

Copyright [Company] 2016	 	 Page #24

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

1.14. Exercises

1.14.1. Exercise 1
Write down a textual description (using the format of Table 2, reproduced below) of the use case
check in guest, shown in Figure 3, also below. As part of your deliberations, identify any
exceptions to the main success scenario.

Table 2 Textual description of a use case in the hotel domain

Identifier and
name UC_1 Make reservation.

Initiator Receptionist or Guest.

Goal Reserve a room at a hotel for a guest.

Pre-condition
None (that is, there are no conditions to be satisfied prior to carrying out this use
case).

Post-condition
A room of the desired type will have been reserved for the guest for the requested
period and the room will be occupied for that period.

Assumptions
A guest can make a reservation via the Internet. The guest is not already known to
the hotel's software system (see main success scenario, step 5).

Main success scenario

1 The guest requests a reservation.

2 The guest selects the desired hotel, dates and type of room.

3
The hotel receptionist provides the availability and price for the request (an offer is
made).

4 The guest agrees to proceed with the offer.

5 The guest provides identification and contact details for the hotel's records.

6 The guest provides payment details.

7 The hotel receptionist creates a reservation and gives it an identifier.

8 The hotel receptionist reveals the identifier to the guest.

9 The hotel receptionist creates a confirmation of the reservation and sends it to the guest.

Copyright [Company] 2016	 	 Page #25

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

!

Figure 3 A use case model for a system for checking in and out of a hotel

Identifier and
name

UC_2 Check in guest.

Initiator Receptionist.

Goal A guest takes up a reservation and occupies a room at the desired hotel.

Pre-condition
There is a reservation for the guest and there is, at least, one room available (of the
desired type) and the guest can pay for the room.

Post-condition
The guest will have been allocated to a room for the period identified in the
reservation and a bill will have been opened for the duration of the stay.

Assumptions
The guest is already known to the hotel's software system. The hotel is confident that
the guest can pay. For example, the guest has a valid credit card.

Main success scenario

1 The guest provides a reservation reference number to the receptionist.

2 The receptionist uses the reference number to find the reservation.

3
The receptionist states the details of the room type and the duration of the stay recorded in the
reservation.

4 The guest confirms the details of the room type and the duration of the stay.

5 The receptionist allocates a room to the guest.

6
The receptionist opens a bill for the guest. (It could be that there is a separate billing application,
which must be notified upon check in.)

Copyright [Company] 2016	 	 Page #26

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest
http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

1.14.2. Exercise 2
What are the tasks involved in preparing a use case diagram?

1.14.4. Exercise 3
Redraw Figure 6, taking into account the information contained in Figures 7 or 8 (all figures
reproduced below), to show common tasks and any extensions to the main success scenario.

!

Figure 6 Alternative behaviour in a hotel system

7 The receptionist issues a key to the guest.

Copyright [Company] 2016	 	 Page #27

http://openlearn.open.ac.uk/mod/glossary/showentry.php?courseid=2447&concept=Guest

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

!

Figure 7 Including the log-on use case in the hotel domain

!

Figure 8 Making log-on the main use case

Do not show the log-on use case, described in Figure 7 or 8.

1.14.5. Exercise 4
A typical lending library keeps a stock of books for the use of its members. Each member can
take out a number of books, up to a certain limit. After a given period of time, the library expects
members to return the books that they have on loan.

Copyright [Company] 2016	 	 Page #28

[Company Name]	 	 [Document Name]
[Project Name]	 	 [Version Number]

When borrowing books members are expected to hand their chosen books to the librarian, who
records each new loan before issuing the books to the member. When a book is on loan to a
member, it is associated with that member: possession of the book passes from the library to the
member for a defined time period. The normal loan period for each book is two weeks. If the
member fails to bring the book back on or before the due date, the library imposes a fine.

In a proposed new system, anyone should be able to browse the stock of books held in the
library, but only a member will be able to reserve a book.

Draw a simple use case diagram for the proposed system and identify the constraints or
assumptions that you make. (For the moment, ignore the issue of fines because you would have
to find out about the library's rules before including them.)

Copyright [Company] 2016	 	 Page #29

